2013 AMC 10B Problems/Problem 16

Revision as of 22:16, 21 February 2013 by Turkeybob777 (talk | contribs)

Problem

In triangle $ABC$, medians $AD$ and $CE$ intersect at $P$, $PE=1.5$, $PD=2$, and $DE=2.5$. What is the area of $AEDC$?

$\qquad\textbf{(A)}13\qquad\textbf{(B)}13.5\qquad\textbf{(C)}14\qquad\textbf{(D)}14.5\qquad\textbf{(E)}$

Solution

Let us use mass points: Assign $B$ mass $1$. Thus, because $E$ is the midpoint of $AB$, $A$ also has a mass of $1$. Similarly, $C$ has a mass of $1$. $D$ and $E$ each have a mass of $2$ because they are between $B$ and $C$ and $A$ and $B$ respectively. Note that the mass of $D$ is twice the mass of $A$, so AP must be twice as long as $PD$. PD has length $2$, so $AP$ has length $4$ and $AD$ has length $6$. Similarly, $CP$ is twice $PE$ and $PE=1.5$, so $CP=3$ and $CE=4.5$. Now note that triangle $PED$ is a $3-4-5$ right triangle with the right angle $DPE$. This means that the quadrilateral $AEDC$ is a kite. The area of a kite is half the product of the diagonals, $AD$ and $CE$. Recall that they are $6$ and $4.5$ respectively, so the area of $AEDC$ is $6*4.5/2=\boxed{\textbf{(B)} 13.5}$

Solution 2

Note that triangle $DPE$ is a right triangle, and that the four angles that have point $P$ are all right angles. Using the fact that the centroid ($P$) divides each median in a $2:1$ ratio, $AP=4$ and $CP=3$. Quadrilateral $AEDC$ is now just four right triangles. The area is $\frac{4\cdot 2+4\cdot 3+3\cdot 2+2\cdot 1.5}{2}=\boxed{\textbf{(B)} 13.5}$