2000 AMC 12 Problems/Problem 17

Revision as of 08:23, 16 July 2013 by Ramahgold (talk | contribs) (Solution)

Problem

A circle centered at $O$ has radius $1$ and contains the point $A$. The segment $AB$ is tangent to the circle at $A$ and $\angle AOB = \theta$. If point $C$ lies on $\overline{OA}$ and $\overline{BC}$ bisects $\angle ABO$, then $OC =$

[asy] import olympiad; size(6cm); unitsize(1cm); defaultpen(fontsize(8pt)+linewidth(.8pt)); labelmargin=0.2; dotfactor=3; pair O=(0,0); pair A=(1,0); pair B=(1,1.5); pair D=bisectorpoint(A,B,O); pair C=extension(B,D,O,A); draw(Circle(O,1)); draw(O--A--B--cycle); draw(B--C); label("$O$",O,SW); dot(O); label("$\theta$",(0.1,0.05),ENE); dot(C); label("$C$",C,S); dot(A); label("$A$",A,E); dot(B); label("$B$",B,E);[/asy]

$\text {(A)}\ \sec^2 \theta - \tan \theta \qquad \text {(B)}\ \frac 12 \qquad \text {(C)}\ \frac{\cos^2 \theta}{1 + \sin \theta}\qquad \text {(D)}\ \frac{1}{1+\sin\theta} \qquad \text {(E)}\ \frac{\sin \theta}{\cos^2 \theta}$

Solution

Since $\overline{AB}$ is tangent to the circle, $\triangle OAB$ is a right triangle. This means that $OA = 1$, $BA = \tan \theta$ and $OB = \sec \theta$. By the Angle Bisector Theorem, \[\frac{OB}{OC} = \frac{AB}{AC} \Longrightarrow AC \sec \theta = OC \tan \theta\] We multiply both sides by $\cos \theta$ to simplify the trigonometric functions, \[AC=OC \sin \theta\] Since $AC + OC = 1$, $1 - OC = OC \sin \theta \Longrightarrow$ $OC = \dfrac{1}{1+\sin \theta}$. Therefore, the answer is $\boxed{\textbf{(D)} \dfrac{1}{1+\sin \theta}}$.


Alternatively, one could notice that OC approaches the value 1/2 as theta gets close to 90 degrees. The only choice that is consistent with this is (D).

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png