Trivial Inequality
The trivial inequality is an inequality that states that the square of any real number is nonnegative. Its name comes from its simplicity and straightforwardness.
Contents
[hide]Statement
For all real numbers ,
, equality holds if and only if
.
Proof
We proceed by contradiction. Suppose there exists a real such that
. We can have either
,
, or
. If
, then there is a clear contradiction, as
. If
, then
gives
upon division by
(which is positive), so this case also leads to a contradiction. Finally, if
, then
gives
upon division by
(which is negative), and yet again we have a contradiction.
Therefore, for all real
, as claimed.
Applications
The trivial inequality is one of the most commonly used theorems in mathematics. It is very well-known and does not require proof.
One application is maximizing and minimizing quadratic functions. It gives an easy proof of the two-variable case of the Arithmetic Mean-Geometric Mean inequality:
Suppose that and
are nonnegative reals. By the trivial inequality, we have
, or
. Adding
to both sides, we get
. Since both sides of the inequality are nonnegative, it is equivalent to
, and thus we have
as desired.
Problems
Introductory
- Find all integer solutions
of the equation
.
- Show that
. Solution
Intermediate
- Triangle
has
and
. What is the largest area that this triangle can have? (AIME 1992)
Olympiad
- Let
be the length of the hypotenuse of a right triangle whose two other sides have lengths
and
. Prove that
. When does the equality hold? (1969 Canadian MO)