1967 AHSME Problems/Problem 29

Revision as of 01:56, 23 February 2015 by Wholeworld (talk | contribs) (fix typo)

Problem

$\overline{AB}$ is a diameter of a circle. Tangents $\overline{AD}$ and $\overline{BC}$ are drawn so that $\overline{AC}$ and $\overline{BD}$ intersect in a point on the circle. If $\overline{AD}=a$ and $\overline{BC}=b$, $a \not= b$, the diameter of the circle is:

$\textbf{(A)}\ |a-b|\qquad \textbf{(B)}\ \frac{1}{2}(a+b)\qquad \textbf{(C)}\ \sqrt{ab} \qquad \textbf{(D)}\ \frac{ab}{a+b}\qquad \textbf{(E)}\ \frac{1}{2}\frac{ab}{a+b}$

Solution

$\fbox{C}$

See also

1967 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 28
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png