1993 UNCO Math Contest II Problems/Problem 3

Revision as of 22:08, 13 February 2018 by Flyhawkeye (talk | contribs) (Solution)

Problem

A student thinks of four numbers. She adds them in pairs to get the six sums $9,18,21,23,26,35.$ What are the four numbers? There are two different solutions.


Solution

Let the numbers be $x$, $y$, $z$, and $w$. Writing in terms of these, we have:

$x+y=9$

$x+z=18$

$x+w=21$

$y+z=23$

$y+w=26$

$z+w=35$.

Adding these up, we have $3x+3y+3z+3w=132$, so $x+y+z+w=44$. Adding the first two equations, we get $2x+y+z=27$. Subtracting this, we obtain $w-x=17$. Adding to the third equation, we have $2w=38$, so $w=19$. Substituting, we have $x=2$. $y=7$, and $z=16 \Rightarrow \boxed{(2, 7, 16, 19)}$ as one of our solutions.

  • second solution needed

See also

1993 UNCO Math Contest II (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10
All UNCO Math Contest Problems and Solutions