2013 AMC 8 Problems/Problem 3

Revision as of 10:27, 27 August 2016 by Christina26 (talk | contribs) (Problem)

Problem

What is the value of $4 \cdot (-1+2-3+4-5+6-7+\cdots+1000)$? hihihihi

$\textbf{(A)}\ -10 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ 500 \qquad \textbf{(E)}\ 2000$

Solution

Notice that we can pair up every two numbers to make a sum of 1: \begin{eqnarray*}(-1 + 2 - 3 + 4 - \cdots + 1000) &=& ((-1 + 2) + (-3 + 4) + \cdots + (-999 + 1000)) \\ &=& (1 + 1 + \cdots + 1) \\  &=& 500\end{eqnarray*}

Therefore, the answer is $4 \cdot 500= \boxed{\textbf{(E)}\ 2000}$.

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png