2018 AIME I Problems/Problem 6

Revision as of 18:22, 10 March 2018 by Ktong (talk | contribs) (Solution)

Problem

Let $N$ be the number of complex numbers $z$ with the properties that $|z|=1$ and $z^{6!}-z^{5!}$ is a real number. Find the remainder when $N$ is divided by $1000$.

Solution 1

Let $a=z^{120}$. This simplifies the problem constraint to $a^6-a \in \mathbb{R}$. This is true if $Im(a^6)=Im(a)$. Let $\theta$ be the angle $a$ makes with the positive x-axis. Note that there is exactly one $a$ for each angle $0\le\theta<2\pi$. This must be true for $12$ values of $a$ (it may help to picture the reference angle making one orbit from and to the positive x-axis; note every time $\sin\theta=\sin{6\theta}$). For each of these solutions for $a$, there are necessarily $120$ solutions for $z$. Thus, there are $12*120=1440$ solutions for $z$, yielding an answer of $\boxed{440}$.

Solution 2

The constraint mentioned in the problem is equivalent to the requirement that the imaginary part is equal to $0$. Since $|z|=1$, let $z=\cos \theta + i\sin \theta$, then we can write the imaginary part of $\Im(z^{6!}-z^{5!})=\Im(z^{720}-z^{120})=\sin\left(720\theta\right)-\sin\left(120\theta\right)=0$. Using the sum-to-product formula, we get $\sin\left(720\theta\right)-\sin\left(120\theta\right)=2\cos\left(\frac{720\theta+120\theta}{2}\right)\sin\left(\frac{720\theta-120\theta}{2}\right)=2\cos\left(\frac{840\theta}{2}\right)\sin\left(\frac{600\theta}{2}\right)\implies \cos\left(\frac{840\theta}{2}\right)=0$ or $\sin\left(\frac{600\theta}{2}\right)=0$. The former yields $840$ solutions, and the latter yields $600$ solutions, giving a total of $840+600=1440$ solution, so our answer is $\boxed{440}$.

See also

2018 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png