1973 AHSME Problems/Problem 19

Revision as of 13:01, 20 February 2020 by Made in 2016 (talk | contribs) (See Also)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Define $n_a!$ for $n$ and $a$ positive to be

\[n_a ! = n (n-a)(n-2a)(n-3a)...(n-ka)\]

where $k$ is the greatest integer for which $n>ka$. Then the quotient $72_8!/18_2!$ is equal to

$\textbf{(A)}\ 4^5 \qquad \textbf{(B)}\ 4^6 \qquad \textbf{(C)}\ 4^8 \qquad \textbf{(D)}\ 4^9 \qquad \textbf{(E)}\ 4^{12}$

Solution

Using the definition of $n_a!$, the quotient can be rewritten as \[\frac{72 \cdot 64 \cdot 56 \cdots 8}{18 \cdot 16 \cdot 14 \cdots 2}\] Note that for a given integer $x$, $\tfrac{72-8x}{18-2x} = 4$. Since $0 \le x \le 8$, the quotient simplifies to $\boxed{\textbf{(D)}\ 4^9}$.

See Also

1973 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions