2004 AIME I Problems/Problem 1

Revision as of 14:57, 22 August 2006 by JBL (talk | contribs) (Solution)

Problem

The digits of a positive integer $n$ are four consecutive integers in decreasing order when read from left to right. What is the sum of the possible remainders when $n$ is divided by 37?

Solution

A brute-force solution to this question is fairly quick, but we'll try something more clever none the less: our numbers have the form ${\underline{(n+3)}}\,{\underline{(n+2)}}\,{\underline{( n+1)}}\,{\underline {(n)}} = 1000(n + 3) + 100(n + 2) + 10(n + 1) + n = 3210 + 1111n$, for $n \in \{0, 1, 2, 3, 4, 5, 6\}$. Now, note that $3\cdot 37 = 111$ so $30 \cdot 37 = 1110$, and $90 \cdot 37 = 3330$ so $89 \cdot 37 = 3219$. So the remainders are all congruent to $n - 9 \pmod{37}$. However, these numbers are negative for our choices of $n$, so in fact the remainders must equal $n + 26$. Adding these numbers up, we get $0 + 1 + 2 + 3 + 4 + 5 + 6 + 7\cdot26 = 203$, our answer.

See also