2020 AMC 12B Problems/Problem 12

Revision as of 20:45, 7 February 2020 by Argonauts16 (talk | contribs) (Created page with "==Problem== Let <math>\overline{AB}</math> be a diameter in a circle of radius <math>5\sqrt2.</math> Let <math>\overline{CD}</math> be a chord in the circle that intersects <m...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $\overline{AB}$ be a diameter in a circle of radius $5\sqrt2.$ Let $\overline{CD}$ be a chord in the circle that intersects $\overline{AB}$ at a point $E$ such that $BE=2\sqrt5$ and $\angle AEC = 45^{\circ}.$ What is $CE^2+DE^2?$

$\textbf{(A)}\ 96 \qquad\textbf{(B)}\ 98 \qquad\textbf{(C)}\  44\sqrt5 \qquad\textbf{(D)}\ 70\sqrt2 \qquad\textbf{(E)}\ 100$