2020 AMC 10B Problems/Problem 5

Revision as of 21:13, 9 February 2020 by Fidgetboss 4000 (talk | contribs)

Problem

How many distinguishable arrangements are there of 1 brown tile, 1 purple tile, 2 green tiles, and 3 yellow tiles in a row from left to right? (Tiles of the same color are indistinguishable.)

$\textbf{(A)}\ 210 \qquad\textbf{(B)}\ 420 \qquad\textbf{(C)}\  630 \qquad\textbf{(D)}\ 840 \qquad\textbf{(E)}\ 1050$

Solution

Let's first find how many possibilities there would be if they were all distinguishable, then divide out the ones we overcounted.

There are $7!$ ways to order $7$ objects. However, since there's $3!=6$ ways to switch the yellow tiles around without changing anything (since they're indistinguishable) and $2!=2$ ways to order the green tiles, we have to divide out these possibilities.

$\frac{7!}{6\cdot2}=\boxed{\textbf{(B) }420}$ ~quacker88

Solution 2 (2 second solve)

Assume that MAA is an immature bunch and guess $\boxed{\textbf{(B) }420}$, which happens to be the correct answer. -fidgetboss_4000

Video Solution

https://youtu.be/Gkm5rU5MlOU

~IceMatrix

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png