2011 AMC 10A Problems/Problem 18
Problem 18
Circles and each have radius 1. Circles and share one point of tangency. Circle has a point of tangency with the midpoint of . What is the area inside Circle but outside circle and circle ?
Solution 1
Not specific: Draw a rectangle with vertices at the centers of and and the intersection of and . Then, we can compute the shaded area as the area of half of plus the area of the rectangle minus the area of the two sectors created by and . This is .
Solution 2 (by artemispi)
The quarter circles in circles A and B that overlap with circle C contain the leaf-shaped regions that are in circle C but outside of the shaded area. Draw a right triangle with sides that are radii of circle A, but the hypotenuse connects the two tips of the leaf-shaped area. Now we can find the area of half the leaf-shaped section by subtracting the area of the triangle from the area of the quarter circle. This total area of the two leaf-shaped regions is $\frac{\(pi (1)^2}{4}-\frac{\1}{4}) \cdot 4={pi-2}$ (Error compiling LaTeX. Unknown error_msg). Therefore, the area of the shaded region is pi-(pi-2)=\boxed{ \mathbf{(C)} 2}$.
See Also
2011 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.