2020 CIME I Problems/Problem 7

Revision as of 10:26, 31 August 2020 by Jbala (talk | contribs) (Created page with "==Problem 7== For every positive integer <math>n</math>, define <cmath>f(n)=\frac{n}{1 \cdot 3 \cdot 5 \cdots (2n+1)}.</cmath> Suppose that the sum <math>f(1)+f(2)+\cdots+f(20...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 7

For every positive integer $n$, define \[f(n)=\frac{n}{1 \cdot 3 \cdot 5 \cdots (2n+1)}.\] Suppose that the sum $f(1)+f(2)+\cdots+f(2020)$ can be expressed as $\frac{p}{q}$ for relatively prime integers $p$ and $q$. Find the remainder when $p$ is divided by $1000$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

2020 CIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All CIME Problems and Solutions

The problems on this page are copyrighted by the MAC's Christmas Mathematics Competitions. AMC logo.png