2006 AIME A Problems/Problem 4

Revision as of 13:03, 25 September 2007 by 1=2 (talk | contribs) (Problem)

Problem

Let $N$ be the number of consecutive 0's at the right end of the decimal representation of the product $1!2!3!4!\cdots99!100!.$ Find the remainder when $N$ is divided by 1000.

Solution

Clearly, $a_6=1$. Now, consider selecting $5$ of the remaining $11$ values. Sort these values in descending order, and sort the other $6$ values in ascending order. Now, let the $5$ selected values be $a_1$ through $a_5$, and let the remaining $6$ be $a_7$ through ${a_{12}}$. It is now clear that there is a bijection between the number of ways to select $5$ values from $11$ and ordered 12-tuples $(a_1,\ldots,a_{12})$. Thus, there will be ${11 \choose 5}=462$ such ordered 12-tuples.

See also

2006 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions