1988 AIME Problems/Problem 12
Problem
Let be an interior point of triangle and extend lines from the vertices through to the opposite sides. Let , , , and denote the lengths of the segments indicated in the figure. Find the product if and .
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Solution
Call the cevians AD, BE, and CF. Using area ratios ( and have the same base), we have:
Similarily, and .
Then,
The identity is a form of Ceva's Theorem.
Plugging in , we get
See also
1988 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |