Chebyshev polynomials of the first kind
Revision as of 17:26, 28 February 2022 by Orange quail 9 (talk | contribs) (Created page with "The Chebyshev polynomials of the first kind are defined recursively by <cmath>T_0(x) = 1,</cmath> <cmath>T_1(x) = x,</cmath> <cmath>T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x),</cmath>...")
The Chebyshev polynomials of the first kind are defined recursively by or equivalently by
Contents
Proof of equivalence of the two definitions
In the proof below, will refer to the recursive definition.
For the base case, for the base case,
Now for the inductive step, let , so that . We then assume that and , and we wish to prove that .
From the cosine sum and difference identities we have and The sum of these equations is rearranging, Substituting our assumptions yields as desired.
Composition identity
For nonnegative integers and , the identity holds.