2007 AMC 12B Problems/Problem 2

Revision as of 22:36, 12 January 2018 by Novus677 (talk | contribs) (Solution 2)
The following problem is from both the 2007 AMC 12B #2 and 2007 AMC 10B #3, so both problems redirect to this page.

Problem

A college student drove his compact car $120$ miles home for the weekend and averaged $30$ miles per gallon. On the return trip the student drove his parents' SUV and averaged only $20$ miles per gallon. What was the average gas mileage, in miles per gallon, for the round trip?

$\textbf{(A) } 22 \qquad\textbf{(B) } 24 \qquad\textbf{(C) } 25 \qquad\textbf{(D) } 26 \qquad\textbf{(E) } 28$

Solution 1

The trip was $240$ miles long and took $\dfrac{120}{30}+\dfrac{120}{20}=4+6=10$ gallons. Therefore, the average mileage was $\dfrac{240}{10}= \boxed{\mathrm{(B) \ } 24}$

Solution 2

Alternatively, we can use the harmonic mean to get $\frac{2}{\frac{1}{20} + \frac{1}{30}} = \frac{2}{\frac{1}{12}} = 24$ $\longrightarrow \boxed{\textbf{(B)} }$

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png