2006 AMC 10B Problems/Problem 24

Revision as of 15:12, 1 August 2022 by Thestudyofeverything (talk | contribs) (Solution)

Problem

Circles with centers $O$ and $P$ have radii $2$ and $4$, respectively, and are externally tangent. Points $A$ and $B$ on the circle with center $O$ and points $C$ and $D$ on the circle with center $P$ are such that $AD$ and $BC$ are common external tangents to the circles. What is the area of the concave hexagon $AOBCPD$?

[asy]size(200);defaultpen(linewidth(0.8)); pair X=(-6,0), O=origin, P=(6,0), B=tangent(X, O, 2, 1), A=tangent(X, O, 2, 2), C=tangent(X, P, 4, 1), D=tangent(X, P, 4, 2); pair top=X+15*dir(X--A), bottom=X+15*dir(X--B); draw(Circle(O, 2)^^Circle(P, 4)); draw(bottom--X--top); draw(A--O--B^^O--P^^D--P--C); pair point=X; label("$2$", midpoint(O--A), dir(point--midpoint(O--A))); label("$4$", midpoint(P--D), dir(point--midpoint(P--D))); label("$O$", O, SE); label("$P$", P, dir(point--P)); pair point=O; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); pair point=P; label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); fill((-3,7)--(-3,-7)--(-7,-7)--(-7,7)--cycle, white);[/asy]

$\mathrm{(A) \ } 18\sqrt{3}\qquad \mathrm{(B) \ } 24\sqrt{2}\qquad \mathrm{(C) \ } 36\qquad \mathrm{(D) \ } 24\sqrt{3}\qquad \mathrm{(E) \ } 32\sqrt{2}$

Video Solution 4

https://youtu.be/cdjZ9Xd3Yt8

~ Education, the Study of Everything


Solution

File is too big, so go to https://www.imgur.com/a/7aphGaa

Sorry for the wrong point names, I didn't know how to change them.

Since a tangent line is perpendicular to the radius containing the point of tangency, $\angle OAD = \angle PDA = 90^\circ$.

Construct a perpendicular to $DP$ that goes through point $O$. Label the point of intersection $X$.

Clearly $OADX$ is a rectangle, so $DX=2$ and $PX=2$. By the Pythagorean Theorem, $OX = \sqrt{6^2 - 2^2} = 4\sqrt{2}$.

The area of $OADX$ is $2\cdot4\sqrt{2}=8\sqrt{2}$. The area of $OXP$ is $\frac{1}{2}\cdot2\cdot4\sqrt{2}=4\sqrt{2}$, so the area of quadrilateral $OADP$ is $8\sqrt{2}+4\sqrt{2}=12\sqrt{2}$. Using similar steps, the area of quadrilateral $OBCP$ is also $12\sqrt{2}$. Therefore, the area of hexagon $AOBCPD$ is $2\cdot12\sqrt{2}= 24\sqrt{2} \Longrightarrow \boxed{\mathrm{(B)}}$.


Note: Quadrilaterals $OADP$ and $OBCP$ are congruent, so they have equal areas.

See also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png