2022 AMC 10B Problems/Problem 9

Revision as of 14:10, 17 November 2022 by Mrthinker (talk | contribs) (Created page with "==Problem== The sum <cmath>\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\dots+\frac{2021}{2022!}</cmath>can be expressed as <math>a-\frac{1}{b!}</math>, where <math>a</math> and <m...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The sum \[\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\dots+\frac{2021}{2022!}\]can be expressed as $a-\frac{1}{b!}$, where $a$ and $b$ are positive integers. What is $a+b$?

$\textbf{(A)}\ 2020 \qquad\textbf{(B)}\ 2021 \qquad\textbf{(C)}\ 2022 \qquad\textbf{(D)}\ 2023 \qquad\textbf{(E)}\ 2024$

=Solution

See Also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png