2022 AMC 10B Problems/Problem 5

Revision as of 14:38, 17 November 2022 by MRENTHUSIASM (talk | contribs) (Created page with "==Problem== What is the value of <cmath>\frac{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}{\sqrt{\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{5^2}\right...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

What is the value of \[\frac{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}{\sqrt{\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{5^2}\right)\left(1-\frac{1}{7^2}\right)}}?\] $\textbf{(A)}\ \sqrt3 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ \sqrt{15} \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \sqrt{105}$

Solution

We apply the difference of squares to the denominator, and then regroup factors: \begin{align*} \frac{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}{\sqrt{\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{5^2}\right)\left(1-\frac{1}{7^2}\right)}} &= \frac{1+\frac13}{\sqrt{1+\frac13}}\cdot\frac{1+\frac15}{\sqrt{1+\frac15}}\cdot\frac{1+\frac17}{\sqrt{1+\frac17}}\cdot\frac{1}{\sqrt{1-\frac13}}\cdot\frac{1}{\sqrt{1-\frac15}}\cdot\frac{1}{\sqrt{1-\frac17}} \\ &= \sqrt{1+\frac13}\cdot\sqrt{1+\frac15}\cdot\sqrt{1+\frac17} \end{align*}

~MRENTHUSIASM

See Also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png