2016 UNCO Math Contest II Problems/Problem 7

Revision as of 18:27, 21 October 2023 by Namelyorange (talk | contribs)

Problem

Evaluate \[S =\sum_{n=2}^{\infty} \frac{4n}{(n^2-1)^2}\]


Solution

First, we perform fractional decomposition on the summed expression.

Let \[\frac{A}{(n-1)^2}+\frac{B}{(n+1)^2} = \frac{4n}{(n^2-1)^2}\]. Multiplying both sides by $(n^2-1)^2$ and expanding gives $(A+B)n^2+2(A-B)n+(A+B)=4n$ Therefore, we have the system of equations $\begin{cases} A+B=0\\ A-B=2\end{cases}$. Adding the two equations gives $2A=2 \implies A=1$, while subtracting the two gives $2B=-2 \implies B=-1$. Therefore, $\frac{4n}{(n^2-1)^2}=\frac{1}{(n-1)^2}-\frac{1}{(n+1)^2}$, so $S =\sum_{n=2}^{\infty} \frac{4n}{(n^2-1)^2}$

$\boxed{\frac{5}{4}}$

Solution 2

This is a telescoping series:

(1−1/9)+(1/4−1/16)+(1/9−1/25)+(1/16−1/36)+(1/25−1/49)+...=5/4

See also

2016 UNCO Math Contest II (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10
All UNCO Math Contest Problems and Solutions