1996 IMO Problems/Problem 1
Problem
We are given a positive integer and a rectangular board with dimensions , . The rectangle is divided into a grid of unit squares. The following moves are permitted on the board: one can move from one square to another only if the distance between the centers of the two squares is . The task is to find a sequence of moves leading from the square with as a vertex to the square with as a vertex.
(a) Show that the task cannot be done if is divisible by or .
(b) Prove that the task is possible when .
(c) Can the task be done when ?
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.