1996 IMO Problems/Problem 1

Revision as of 19:49, 6 October 2023 by Tomasdiaz (talk | contribs) (Created page with "==Problem== We are given a positive integer <math>r</math> and a rectangular board <math>ABCD</math> with dimensions <math>|AB|=20</math>, <math>|BC|=12</math>. The rectangl...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

We are given a positive integer $r$ and a rectangular board $ABCD$ with dimensions $|AB|=20$, $|BC|=12$. The rectangle is divided into a grid of $20 \times 12$ unit squares. The following moves are permitted on the board: one can move from one square to another only if the distance between the centers of the two squares is $\sqrt{r}$. The task is to find a sequence of moves leading from the square with $A$ as a vertex to the square with $B$ as a vertex.

(a) Show that the task cannot be done if $r$ is divisible by $2$ or $3$.

(b) Prove that the task is possible when $r=73$.

(c) Can the task be done when $r=97$?

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.