1988 AIME Problems/Problem 12

Revision as of 17:00, 28 September 2007 by Azjps (talk | contribs) (img)

Problem

Let $P$ be an interior point of triangle $ABC$ and extend lines from the vertices through $P$ to the opposite sides. Let $a$, $b$, $c$, and $d$ denote the lengths of the segments indicated in the figure. Find the product $abc$ if $a + b + c = 43$ and $d = 3$.

1988 AIME-12.png

Solution

Call the cevians AD, BE, and CF. Using area ratios ($\triangle PBC$ and $\triangle ABC$ have the same base), we have:

$\frac {d}{a + d} = \frac {[PBC]}{[ABC]}$

Similarily, $\frac {d}{b + d} = \frac {[PCA]}{[ABC]}$ and $\frac {d}{c + d} = \frac {[PAB]}{[ABC]}$.

Then, $\frac {d}{a + d} + \frac {d}{b + d} + \frac {d}{c + d} = \frac {[PBC]}{[ABC]} + \frac {[PCA]}{[ABC]} + \frac {[PAB]}{[ABC]} = \frac {[ABC]}{[ABC]} = 1$

The identity $\frac {d}{a + d} + \frac {d}{b + d} + \frac {d}{c + d} = 1$ is a form of Ceva's Theorem.

Plugging in $d = 3$, we get

\[\frac{3}{a + 3} + \frac{3}{b + 3} + \frac{3}{c+3} = 1\] \[3[(a + 3)(b + 3) + (b + 3)(c + 3) + (c + 3)(a + 3)] = (a+3)(b+3)(c+3)\] \[3(ab + bc + ca) + 18(a + b + c) + 81 = abc + 3(ab + bc + ca) + 9(a + b + c) + 27\] \[9(a + b + c) + 54 = abc\] \[abc = 441\]

See also

1988 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions