2008 AMC 12A Problems/Problem 17

Revision as of 14:34, 17 February 2008 by Xantos C. Guin (talk | contribs) (New page: ==Problem== Let <math>a_1,a_2,\ldots</math> be a sequence determined by the rule <math>a_n=a_{n-1}/2</math> if <math>a_{n-1}</math> is even and <math>a_n=3a_{n-1}+1</math> if <math>a_{n-1}...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $a_1,a_2,\ldots$ be a sequence determined by the rule $a_n=a_{n-1}/2$ if $a_{n-1}$ is even and $a_n=3a_{n-1}+1$ if $a_{n-1}$ is odd. For how many positive integers $a_1 \le 2008$ is it true that $a_1$ is less than each of $a_2$, $a_3$, and $a_4$?

$\textbf{(A)} 250 \qquad \textbf{(B)} 251 \qquad \textbf{(C)} 501 \qquad \textbf{(D)} 502 \qquad \textbf{(E)} 1004$

Solution

All positive integers can be expressed as $4n$, $4n+1$, $4n+2$, or $4n+3$, where $n$ is a nonnegative integer.

If $a_1=4n$, then $a_2=\frac{4n}{2}=2n<a_1$.

If $a_1=4n+1$, then $a_2=3(4n+1)+1=12n+4$, $a_3=\frac{12n+4}{2}=6n+2$, and $a_4=\frac{6n+2}{2}=3n+1<a_1$.

If $a_1=4n+2$, then $a_2=2n+1<a_1$.

If $a_1=4n+3$, then $a_2=3(4n+3)+1=12n+10$, $a_3=\frac{12n+10}{2}=6n+5$, and $a_4=3(6n+5)+1=18n+16$.

Since $12n+10, 6n+5, 18n+16 > 4n+3$, every positive integer $a_1=4n+3$ will satisfy $a_1<a_2,a_3,a_4$.

Since one fourth of the positive integers $a_1 \le 2008$ can be expressed as $4n+3$, where $n$ is a nonnegative integer, the answer is $\frac{1}{4}\cdot 2008 = 502 \Rightarrow D$

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

Collatz Problem