2007 AMC 12B Problems/Problem 20

Revision as of 09:57, 15 October 2008 by 1=2 (talk | contribs) (See also)

Problem

The parallelogram bounded by the lines $y=ax+c$, $y=ax+d$, $y=bx+c$, and $y=bx+d$ has area $18$. The parallelogram bounded by the lines $y=ax+c$, $y=ax-d$, $y=bx+c$, and $y=bx-d$ has area $72$. Given that $a$, $b$, $c$, and $d$ are positive integers, what is the smallest possible value of $a+b+c+d$?

$\mathrm {(A)} 13\qquad \mathrm {(B)} 14\qquad \mathrm {(C)} 15\qquad \mathrm {(D)} 16\qquad \mathrm {(E)} 17$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions