2008 AIME I Problems/Problem 10
Problem
Let be an isosceles trapezoid with whose angle at the longer base is . The diagonals have length , and point is at distances and from vertices and , respectively. Let be the foot of the altitude from to . The distance can be expressed in the form , where and are positive integers and is not divisible by the square of any prime. Find .
Solution
Solution 1
Applying the triangle inequality to , we see that . However, if is strictly greater than , then the circle with radius and center does not touch , which implies that , a contradiction. Therefore, .
It follows that , , and are collinear, and also that and are triangles. Hence , and
Finally, the answer is .
Solution 2
No restrictions are set on the lengths of the bases, so for calculational simplicity let . Since is a triangle, .
The answer is . Note that while this is not rigorous, the above solution shows that is indeed the only possibility.
See also
2008 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |