Holomorphic function
A holomorphic function is a differentiable complex function. That is, just as in the real case, is holomorphic at if exists. This is much stronger than in the real case since we must allow to approach zero from any direction in the complex plane.
Usually, we speak of functions as holomorphic on (open) sets, rather than at points, for when we consider the behavior of a function at a point, we prefer to consider it in the context of the points nearby.
Cauchy-Riemann Equations
We can obtain an equivalent definition if we break and into real and imaginary components.
Specifically, let be definted by If , then
It turns out that we can express the idea " is holomorphic" entirely in terms of partial derivatives of and .
Theorem. Let be an open, connected subset of . Let us abbreviate and . Then the function is holomorphic on if and only if all the partial derivatives of and with respect to and are continuous on , and the following system holds for every point : These equations are called the Cauchy-Riemann Equations.
For convenience, we may abbreviate With this abuse of notation, we may rewrite the Cauchy-Riemann equations thus:
Proof of theorem. First, suppose that is complex-differentiable at . Then at ,
\begin{align*} \frac{\partial f}{\partial y} = \lim_{h\to 0} \frac{f(z+ih)-f(z)}{h} &= i \cdot \lim_{h\to 0} \frac{f(z+ih) - f(z)}{ih} \\ &= i \cdot f'(z) \\ &= i \cdot \lim_{h\to 0} \frac{f(z+h)-f(z)}{h} = i \cdot \frac{\partial f}{\partial x} . (Error compiling LaTeX. Unknown error_msg)
Breaking into real and imaginary components, we see Setting real and imaginary components equal, we obtain the Cauchy-Riemann equations. It follows from the Cauchy Integral Formula that the second derivative of exists at ; thus the derivative of is continuous at , and so are the partial derivatives of and .
Now, suppose the Cauchy-Riemann equations hold a point , and that the partial derivatives of and exist and are continuous in a neighborhood of . Let be an arbitrarily small complex number, with . Then with the first approximation from the definition of the partial derivatives and the second from the continuity of the partial derivatives. We may force to be small enough that both approximations are arbitrarily accurate. Now, by the Cauchy-Riemann equations, Therefore In particular, the limit exists, so is differentiable at . Since was arbitrary, it follows that is differentiable everywhere in .
Analytic Functions
A related notion to that of homolorphicity is that of analyticity. A function is said to be analytic at if has a convergent power series expansion on some neighborhood of . Amazingly, it turns out that a function is holomorphic at if and only if it is analytic at .