2000 AMC 8 Problems/Problem 7

Revision as of 09:21, 15 May 2011 by Loverslane22 (talk | contribs) (Created page with '==Problem== What is the minimum possible product of three different numbers of the set <math>\{-8,-6,-4,0,3,5,7\}</math>? <math>\text{(A)}\ -336 \qquad \text{(B)}\ -280 \qquad …')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

What is the minimum possible product of three different numbers of the set $\{-8,-6,-4,0,3,5,7\}$?

$\text{(A)}\ -336 \qquad \text{(B)}\ -280 \qquad \text{(C)}\ -210 \qquad \text{(D)}\ -192 \qquad \text{(E)}\ 0$

Solution

The only way to get a negative product using three numbers is to multiply one negative number and two positives or three negatives. Only two reasonable choices exist: $(-8)\times(-6)\times(-4)$ = (-8)\times(24) = -192$and$(-8)\times5\times7 = (-8)\times35 = -280$. The latter is smaller, so${\text{(B) 7}}$.

See Also

2000 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions