1997 AHSME Problems/Problem 18

Revision as of 09:14, 9 August 2011 by Talkinaway (talk | contribs)

Problem

A list of integers has mode $32$ and mean $22$. The smallest number in the list is $10$. The median $m$ of the list is a member of the list. If the list member $m$ were replaced by $m+10$, the mean and median of the new list would be $24$ and $m+10$, respectively. If were $m$ instead replaced by $m-8$, the median of the new list would be $m-4$. What is $m$?

$\textbf{(A)}\ 16\qquad\textbf{(B)}\ 17\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 19\qquad\textbf{(E)}\ 20$

See also

1997 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions