1991 USAMO Problems/Problem 4
Revision as of 18:04, 13 January 2008 by Boy Soprano II (talk | contribs) (problem and elementary solution)
Problem
Let where and are positive integers. Prove that .
[You may wish to analyze the ratio for real and integer .]
Solution
Let us assume without loss of generality that . We then note that Similarly,
We note that equations and imply that . Then , so Multiplying this inequality by , we have It then follows that Rearranging this inequality, we find that , as desired.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Resources
1991 USAMO (Problems • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |