2014 AMC 12B Problems/Problem 7

Revision as of 12:23, 22 February 2014 by Eum (talk | contribs)

Problem

For how many positive integers $n$ is $\frac{n}{30-n}$ also a positive integer?

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}}\ 7\qquad\textbf{(E)}\ 8$ (Error compiling LaTeX. Unknown error_msg)

Solutions

Solution 1

We know that $n \le 30$ or else $30-n$ will be negative, resulting in a negative fraction. We also know that $n \ge 15$ or else the fraction's denominator will exceed its numerator making the fraction unable to equal a positive integer value. Substituting all values $n$ from $15$ to $30$ gives us integer values for $n=15, 20, 24, 25, 27, 28, 29$. Counting them up, we have $\boxed{\textbf{(D)}\ 7}$ possible values for $n$.

Solution 2

Let $\frac{n}{30-n}=m$, where $m \in \mathbb{N}$. Solving for $n$, we find that $n=\frac{30m}{m+1}$. Because $m$ and $m+1$ are relatively prime, $m+1|30$. Our answer is the number of proper divisors of $2^13^15^1$, which is $(1+1)(1+1)(1+1)-1 = \boxed{\textbf{(D)}\ 7}$.

See also

2014 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png