2015 AIME I Problems/Problem 14

Revision as of 17:59, 20 March 2015 by Ryanyz10 (talk | contribs) (Created page with "==Problem== For each integer <math>n \ge 2</math>, let <math>A(n)</math> be the area of the region in the coordinate plane deefined by the inequalities <math>1\le x \le n</ma...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

For each integer $n \ge 2$, let $A(n)$ be the area of the region in the coordinate plane deefined by the inequalities $1\le x \le n$ and $0\le y \le x \left\lfloor \sqrt x \right\rfloor$, where $\left\lfloor \sqrt x \right\rfloor$ is the greatest integer not exceeding $\sqrt x$. Find the number of values of $n$ with $2\le n \le 1000$ for which $A(n)$ is an integer.

See Also

2015 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png