1983 AHSME Problems/Problem 1

Revision as of 13:22, 27 June 2015 by MathAwesome123 (talk | contribs) (Created page with "==Problem== If <math>x \neq 0, \frac x{2} = y^2</math> and <math>\frac{x}{4} = 4y</math>, then <math>x</math> equals <math>\textbf{(A)}\ 8\qquad \textbf{(B)}\ 16\qquad \textbf...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $x \neq 0, \frac x{2} = y^2$ and $\frac{x}{4} = 4y$, then $x$ equals $\textbf{(A)}\ 8\qquad \textbf{(B)}\ 16\qquad \textbf{(C)}\ 32\qquad \textbf{(D)}\ 64\qquad \textbf{(E)}\ 128$

Solution

From $\frac{x}{4} = 4y$, we get $x=16y$. Plugging in the other equation, $\frac{16y}{2} = y^2$, so $y^2-8y=0$. Factoring, we get $y(y-8)=0$, so the solutions are $0$ and $8$. Since $x \neq 0$, the answer is $\textbf{(A)}\ 8$.