2016 AMC 8 Problems/Problem 17

Revision as of 11:36, 23 November 2016 by Wirecat (talk | contribs) (Solution)

17. An ATM password at Fred's Bank is composed of four digits from $0$ to $9$, with repeated digits allowable. If no password may begin with the sequence $9,1,1,$ then how many passwords are possible? $(A)\mbox{ }30\mbox{           }(B)\mbox{ }7290\mbox{           }(C)\mbox{ }9000\mbox{           }(D)\mbox{ }9990\mbox{           }(E)\mbox{ }9999\mbox{           }$

Solution

For the first three digits, there are $10^3-1=999$ combinations since $911$ is not allowed. For the final digit, any of the $10$ numbers are allowed. $999 \cdot 10 = 9990 \rightarrow \boxed{D}$

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png