2017 AIME II Problems/Problem 3
A triangle has vertices , , and . The probability that a randomly chosen point inside the triangle is closer to vertex than to either vertex or vertex can be written as , where and are relatively prime positive integers. Find .
[asy] pair A,B,C,D,X,Z,P; A=(0,0); B=(12,0); C=(8,10); X=(10,5); Z=(6,0); P=(6,3.4); fill(B--X--P--Z--cycle,lightgray); draw(A--B--C--cycle); dot(A); label("",A,SW); dot(B); label("",B,SE); dot(C); label("",C,N); draw(X--P,dashed); draw(Z--P,dashed); dot(X); label("",X,NE); dot(Z); label("",Z,S); dot(P); label("",P,NW); [/asy] The set of all points closer to point than to point lie to the right of the perpendicular bisector of (line in the diagram), and the set of all points closer to point than to point lie below the perpendicular bisector of (line in the diagram). Therefore, the set of points inside the triangle that are closer to than to either vertex or vertex is bounded by quadrilateral . Because is the midpoint of and is the midpoint of , and . The coordinates of point is the solution to the system of equations defined by lines and . Using the point-slope form of a linear equation and the fact that the slope of the line perpendicular to a line with slope is , the equation for line is and the equation for line is . The solution of this system is . Using the shoelace formula on quadrilateral and triangle , the area of quadrilateral is and the area of triangle is . Finally, the probability that a randomly chosen point inside the triangle is closer to vertex than to vertex or vertex is the ratio of the area of quadrilateral to the area of , which is . The answer is .