2015 AMC 10B Problems/Problem 24

Revision as of 09:55, 26 July 2017 by Naman12 (talk | contribs) (Alternate Solution)

Problem

Aaron the ant walks on the coordinate plane according to the following rules. He starts at the origin $p_0=(0,0)$ facing to the east and walks one unit, arriving at $p_1=(1,0)$. For $n=1,2,3,\dots$, right after arriving at the point $p_n$, if Aaron can turn $90^\circ$ left and walk one unit to an unvisited point $p_{n+1}$, he does that. Otherwise, he walks one unit straight ahead to reach $p_{n+1}$. Thus the sequence of points continues $p_2=(1,1), p_3=(0,1), p_4=(-1,1), p_5=(-1,0)$, and so on in a counterclockwise spiral pattern. What is $p_{2015}$?

$\textbf{(A) } (-22,-13)\qquad\textbf{(B) } (-13,-22)\qquad\textbf{(C) } (-13,22)\qquad\textbf{(D) } (13,-22)\qquad\textbf{(E) } (22,-13)$

Solution

The first thing we would do is track Aaron's footsteps:

He starts by taking $1$ step East and $1$ step North, ending at $(1,1)$ after $2$ steps and about to head West.

Then he takes $2$ steps West and $2$ steps South, ending at $(-1,-1$) after $2+4$ steps, and about to head East.

Then he takes $3$ steps East and $3$ steps North, ending at $(2,2)$ after $2+4+6$ steps, and about to head West.

Then he takes $4$ steps West and $4$ steps South, ending at $(-2,-2)$ after $2+4+6+8$ steps, and about to head East.

From this pattern, we can notice that for any integer $k \ge 1$ he's at $(-k, -k)$ after $2 + 4 + 6 + ... + 4k$ steps, and about to head East. There are $2k$ terms in the sum, with an average value of $(2 + 4k)/2 = 2k + 1$, so:

\[2 + 4 + 6 + ... + 4k = 2k(2k + 1)\]

If we substitute $k = 22$ into the equation: $44(45) = 1980 < 2015$. So he has $35$ moves to go. This makes him end up at $(-22+35,-22) = (13,-22) \implies \boxed{\textbf{(D)} (13, -22)}$

Alternate Solution

We are given that Aaron starts at $(0, 0)$, and we note that his net steps follow the pattern of $+1$ in the $x$-direction, $+1$ in the $y$-direction, $-2$ in the $x$-direction, $-2$ in the $y$-direction, $+3$ in the $x$-direction, $+3$ in the $y$-direction, and so on, where we add odd and subtract even.

We want $2 + 4 + 6 + 8 + ... + 2n = 2015$, but it does not work out cleanly. Instead, we get that $2 + 4 + 6 + ... + 2(44) = 1980$, which means that there are $35$ extra steps past adding $-44$ in the $x$-direction (and the final number we add in the $y$-direction is $-44$).

So $p_{2015} = (0+1-2+3-4+5...-44+35, 0+1-2+3-4+5...-44)$.

We can group $1-2+3-4+5...-44$ as $(1-2)+(3-4)+(5-6)+...+(43-44) = -22$.

Thus $p_{2015} = \boxed{\textbf{(D)}\; (13, -22)}$.

See Also

2015 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png