2016 AMC 8 Problems/Problem 24
The digits , , , , and are each used once to write a five-digit number . The three-digit number is divisible by , the three-digit number is divisible by , and the three-digit number is divisible by . What is ?
Solution
We see that since is divisible by , must equal either or , but it cannot equal , so . We notice that since must be even, must be either or . However, when , we see that , which cannot happen because and are already used up; so . This gives , meaning . Now, we see that could be either or , but is not divisible by , but is. This means that and .
2016 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
Solution 2
We know that out of is divisible by . Therefore is obviously 5 because is divisible by 5. So we now have PQR5T as our number. Next, lets move on to the second piece of information that was given to us. RST is divisible by 3. So, according to the divisibility of 3 rule the sum of RST has to be a multiple of 3. The only 2 big enough is 9 and 12 and since 5 is already given. The possible sums of RT is 4 and 7. So, the possible values for R are 1,3,4,3 and the possible values of T is 3,1,3,4. So, using this we can move on to the fact that PQR is divisible by 4. So, using that we know that R has to be even so 4 is the only possible value for R. Using that we also know that 3 is the only possible value for 3. So, we know have PQRST = PQ453 so the possible values are 1 and 2 for P and Q. Using the divisibility rule of 4 we know that QR has to be divisible by 4. So, either 14 or 24 are the possibilities, and 24 is divisible by 4. So the only value left for P is 1. .