2015 AMC 12B Problems/Problem 25
Contents
Problem
A bee starts flying from point . She flies inch due east to point . For , once the bee reaches point , she turns counterclockwise and then flies inches straight to point . When the bee reaches she is exactly inches away from , where , , and are positive integers and and are not divisible by the square of any prime. What is ?
Solution 1
Let , a counterclockwise rotation centered at the origin. Notice that on the complex plane is:
We need to find the magnitude of on the complex plane. This is an arithmetic/geometric series.
We want to find . First, note that because . Therefore
Hence, since , we have
Now we just have to find . This can just be computed directly:
Therefore
Thus the answer is
Solution 2
Here is an alternate solution that does not use complex numbers:
We will calculate the distance from to using the Pythagorean theorem. Assume lies at the origin, so we will calculate the distance to by calculating the distance traveled in the x-direction and the distance traveled in the y-direction. We can calculate this by summing each movement:
A movement of units at degrees is the same thing as a movement of units at degrees, so we can adjust all the cosines with arguments greater than 180 as follows:
Now we group terms with like-cosines and factor out the cosines:
Each sum in the parentheses has 336 terms (except the very last one, which has 335), so by pairing each term, we can see that there are pairs of . So each sum evaluates to , except the very last sum, which has 167 pairs of and an extra 2010, so it evaluates to . Plugging in these values:
Now that we have how far was traveled in the x-direction, we need to find how far was traveled in the y-direction. Using the same logic as above, we arrive at the sum:
The last step is to use the Pythagorean to find the distance from . This distance is given by:
Multiplying out, we have , so the answer is .
See Also
2015 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.