1973 AHSME Problems/Problem 1

Revision as of 13:37, 4 July 2018 by Rockmanex3 (talk | contribs) (Solution to Problem 1)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A chord which is the perpendicular bisector of a radius of length 12 in a circle, has length

$\textbf{(A)}\ 3\sqrt3\qquad\textbf{(B)}\ 27\qquad\textbf{(C)}\ 6\sqrt3\qquad\textbf{(D)}\ 12\sqrt3\qquad\textbf{(E)}\ \text{ none of these}$

Solutions

[asy]  draw(circle((0,0),12)); draw((0,0)--(0,12)); draw((0,0)--(10.392,6)--(-10.392,6)--(0,0)); label("$12$",(5.196,3),SE); label("$12$",(-5.196,3),SW); label("$6$",(0,3),E); draw((1,6)--(1,5)--(0,5));  [/asy]

Draw a diagram as shown. Using the Pythagorean Theorem (or by using 30-60-90 triangles), half of the chord length is $6\sqrt{3}$, so the chord’s length is $\boxed{\textbf{(D) } 12\sqrt{3}}$. One can also find the length directly by using the Law of Cosines.


See Also

1973 AHSC (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions