1983 AHSME Problems/Problem 30

Revision as of 21:39, 17 January 2018 by Mathlovermc (talk | contribs) (Created page with "Since <math>\angle CAP = \angle CBP = 10^\circ</math>, quadrilateral <math>ABPC</math> is cyclic. [asy] import geometry; import graph; unitsize(2 cm); pair A, B, C, M, N, P...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Since $\angle CAP = \angle CBP = 10^\circ$, quadrilateral $ABPC$ is cyclic.

[asy] import geometry; import graph;

unitsize(2 cm);

pair A, B, C, M, N, P;

M = (-1,0); N = (1,0); C = (0,0); A = dir(140); B = dir(20); P = extension(A, A + rotate(10)*(C - A), B, B + rotate(10)*(C - B));

draw(M--N); draw(arc(C,1,0,180)); draw(A--C--B); draw(A--P--B); draw(A--B); draw(circumcircle(A,B,C),dashed);

label("$A$", A, W); label("$B$", B, E); label("$C$", C, S); label("$M$", M, SW); label("$N$", N, SE); label("$P$", P, S); [/asy]

Since $\angle ACM = 40^\circ$, $\angle ACP = 140^\circ$, so $\angle ABP = 40^\circ$. Then $\angle ABC = \angle ABP - \angle CBP = 40^ \circ - 10^\circ = 30^\circ$.

Since $CA = CB$, triangle $ABC$ is isosceles, and $\angle BAC = \angle ABC = 30^\circ$. Then $\angle BAP = \angle BAC - \angle CAP = 30^\circ - 10^\circ = 20^\circ$. Hence, $\angle BCP = \angle BAP = \boxed{20^\circ}$.