2019 AMC 12B Problems/Problem 14

Revision as of 14:40, 14 February 2019 by Scrabbler94 (talk | contribs) (previous answer was incorrect)

Problem

Let $S$ be the set of all positive integer divisors of $100,000.$ How many numbers are the product of two distinct elements of $S?$

$\textbf{(A) }98\qquad\textbf{(B) }100\qquad\textbf{(C) }117\qquad\textbf{(D) }119\qquad\textbf{(E) }121$

Solution

The prime factorization of 100,000 is $2^5 \cdot 5^5$. Thus, we choose two numbers $2^a5^b$ and $2^c5^d$ where $0 \le a,b,c,d \le 5$ and $(a,b) \neq (c,d)$, whose product is $2^{a+c}5^{b+d}$, where $0 \le a+c \le 10$ and $0 \le b+d \le 10$.

Consider $100000^2 = 2^{10}5^{10}$. The number of divisors is $(10+1)(10+1) = 121$. However, some of the divisors of $2^{10}5^{10}$ cannot be written as a product of two distinct divisors of $2^5 \cdot 5^5$, namely: $1 = 2^05^0$, $2^{10}5^{10}$, $2^{10}$, and $5^{10}$. This gives $121-4 = 117$ candidate numbers. It is not too hard to show that every number of the form $2^p5^q$ where $0 \le p, q \le 10$, and $p,q$ are not both 0 or 10, can be written as a product of two distinct elements in $S$. Hence the answer is $\boxed{\textbf{(C) } 117}$.

-scrabbler94

See Also

2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions