1988 IMO Problems/Problem 2
Problem
Let be a positive integer and let be subsets of a set .
Suppose that
(a) Each has exactly elements,
(b) Each contains exactly one element, and
(c) Every element of belongs to at least two of the .
For which values of can one assign to every element of one of the numbers and in such a way that has assigned to exactly of its elements?
See Also
1988 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |