2020 AMC 10B Problems/Problem 15

Revision as of 13:20, 8 February 2020 by Mathgirl199 (talk | contribs) (Solution)

Problem

Steve wrote the digits $1$, $2$, $3$, $4$, and $5$ in order repeatedly from left to right, forming a list of $10,000$ digits, beginning $123451234512\ldots.$ He then erased every third digit from his list (that is, the $3$rd, $6$th, $9$th, $\ldots$ digits from the left), then erased every fourth digit from the resulting list (that is, the $4$th, $8$th, $12$th, $\ldots$ digits from the left in what remained), and then erased every fifth digit from what remained at that point. What is the sum of the three digits that were then in the positions $2019, 2020, 2021$?

$\textbf{(A)} \text{ 7} \qquad \textbf{(B)} \text{ 9} \qquad \textbf{(C)} \text{ 10} \qquad \textbf{(D)} \text{ 11} \qquad \textbf{(E)} \text{ 12}$

Solution

Bash it out until you find a pattern. In the end, you'll see that the $2019^{th}$, $2020^{th}$, and the $2021^{st}$ numbers are $2, 4, 5$, giving the answer $2+4+5= \boxed {\textbf{(D)} \text{ 11}$ (Error compiling LaTeX. Unknown error_msg) ~DragonWarrior123

Solution 2

After erasing every third digit, the list becomes $1245235134\ldots$ repeated. After erasing every fourth digit from this list, the list becomes $124235341452513\ldots$ repeated. Finally, after erasing every fifth digit from this list, the list becomes $124253415251\ldots$ repeated. Since this list repeats every $12$ digits and since $2019,2020,2020$ are $3,4,5$ respectively in $\pmod{12},$ we have that the $2019$th, $2020$th, and $2021$st digits are the $3$rd, $4$th, and $5$th digits respectively. It follows that the answer is $4+2+5= \boxed {\textbf{(D)} \text{ 11}}.$ ~dolphin7

Video Solution

https://youtu.be/t6yjfKXpwDs

~IceMatrix

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png