1985 AIME Problems/Problem 4

Revision as of 17:09, 19 January 2007 by JBL (talk | contribs) (Solution)

Problem

A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly $\frac1{1985}$.


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


Solution

The lines passing through $A$ and $C$ divide the square into three parts, two right triangles and a parallelogram. The area of the triangles together is easily seen to be $\frac{n - 1}{n}$, so the area of the parallelogram is $A = \frac{1}{n}$. By the Pythagorean Theorem, the base of the parallelogram has length $l = \sqrt{1^2 + \left(\frac{n - 1}{n}\right)^2} = \frac{1}{n}\sqrt{2n^2 - 2n + 1}$, so the parallelogram has height $h = \frac{A}{l} = \frac{1}{\sqrt{2n^2 - 2n + 1}}$. But the height of the parallelogram is the side of the little square, so $2n^2 - 2n + 1 = 1985$. Solving this quadratic equation gives $n = 032$.

See also