1985 AIME Problems/Problem 4


A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly $\frac1{1985}$.

AIME 1985 Problem 4.png

Solution 1

The lines passing through $A$ and $C$ divide the square into three parts, two right triangles and a parallelogram. Using the smaller side of the parallelogram, $1/n$, as the base, where the height is 1, we find that the area of the parallelogram is $A = \frac{1}{n}$. By the Pythagorean Theorem, the longer base of the parallelogram has length $l = \sqrt{1^2 + \left(\frac{n - 1}{n}\right)^2} = \frac{1}{n}\sqrt{2n^2 - 2n + 1}$, so the parallelogram has height $h = \frac{A}{l} = \frac{1}{\sqrt{2n^2 - 2n + 1}}$. But the height of the parallelogram is the side of the little square, so $2n^2 - 2n + 1 = 1985$. Solving this quadratic equation gives $n = \boxed{32}$.

Solution 2


Surrounding the square with area $\frac{1}{1985}$ are $4$ right triangles with hypotenuse $1$ (sides of the large square). Thus, $X + \frac{1}{1985} = 1$, where $X$ is the area of the of the 4 triangles. We can thus use proportions to solve this problem. \begin{eqnarray*} \frac{GF}{BE}=\frac{CG}{CB}\implies \frac{\frac{1}{\sqrt{1985}}}{BE}=\frac{\frac{1}{n}}{1}\implies BE=\frac{n\sqrt{1985}}{1985} \end{eqnarray*} Also, \begin{eqnarray*} \frac{BE}{1}=\frac{EC}{\frac{n-1}{n}}\implies EC=\frac{\sqrt{1985}}{1985}(n-1) \end{eqnarray*} Thus, \begin{eqnarray*} 2(BE)(EC)+\frac{1}{1985}=1\\ 2n^{2}-2n+1=1985\\ n(n-1)=992 \end{eqnarray*} Simple factorization and guess and check gives us $\boxed{32}$.

Solution 3

AIME 1985 Problem 4 Solution 3 Diagram.png

Line Segment $DE = \frac{1}{n}$, so $EC = 1 - \frac{1}{n} = \frac{n-1}{n}$. Draw line segment $HE$ parallel to the corresponding sides of the small square, $HE$ has length $\frac{1}{\sqrt{1985}}$, as it is the same length as the sides of the square. Notice that $\triangle CEL$ is similar to $\triangle HDE$ by $AA$ similarity. Thus, $\frac{LC}{HE} = \frac{EC}{DE} = n-1$, so $LC = \frac{n-1}{\sqrt{1985}}$. Notice that $\triangle CEL$ is also similar to $\triangle CDF$ by $AA$ similarity. Thus, $\frac{FC}{EC} = \frac{DC}{LC}$, and the expression simplifies into a quadratic equation $n^2 - n - 992 = 0$. Solving this quadratic equation yields $n =\boxed{32}$.

See also

1985 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions
Invalid username
Login to AoPS