1997 AIME Problems/Problem 14
Problem
Let and be distinct, randomly chosen roots of the equation . Let be the probability that , where and are relatively prime positive integers. Find .
Solution
The solution requires the use of Euler's formula:
If , where k is any constant, the equation reduces to: $\begin{eqnarray*} e^{2\pi ik}&=&\cos(2\pi k)+i\sin(2\pi k)\\ &=&1+0i\\ &=&1+0\\ &=&1\\ z^{1997}-1&=&0\\ z^{1997}&=&1\\ z^{1997}&=&e^{2\pi ik}\\ z&=&e^{\frac{2\pi ik}{1997}} \end{eqnarray*}<\math>
== See also ==
- [[1997 AIME Problems]]$ (Error compiling LaTeX. Unknown error_msg)