1982 IMO Problems/Problem 6
Revision as of 22:29, 29 January 2021 by Hamstpan38825 (talk | contribs) (Created page with "==Problem== Let <math>S</math> be a square with sides length <math>100</math>. Let <math>L</math> be a path within <math>S</math> which does not meet itself and which is compo...")
Problem
Let be a square with sides length . Let be a path within which does not meet itself and which is composed of line segments with . Suppose that for every point on the boundary of there is a point of at a distance from no greater than . Prove that there are two points and of such that the distance between and is not greater than and the length of the part of which lies between and is not smaller than .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See Also
1982 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last Question |
All IMO Problems and Solutions |