1993 AHSME Problems/Problem 16

Revision as of 21:18, 27 May 2021 by Logsobolev (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Consider the non-decreasing sequence of positive integers \[1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,\cdots\] in which the $n^{th}$ positive integer appears $n$ times. The remainder when the $1993^{rd}$ term is divided by $5$ is

$\text{(A) } 0\quad \text{(B) } 1\quad \text{(C) } 2\quad \text{(D) } 3\quad \text{(E) } 4$

Solution

The sequence of 1's ends at position 1, and the sequence of 2's ends at position 1+2, and the sequence of $n$'s ends at position $1+2+\dots+n$.

Therefore we want to find the smallest integer $n$ that satisfies $\frac{n(n+1)}{2}\geq 1993$.

By trial and error, the value of $n$ is $63$, and $63 \div 5$ has a remainder of $3$.

$\fbox{D}$

See also

1993 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png