2021 JMPSC Invitationals Problems/Problem 14
Revision as of 15:10, 11 July 2021 by Samrocksnature (talk | contribs) (Created page with "==Problem== Let there be a <math>\triangle ACD</math> such that <math>AC=5</math>, <math>AD=12</math>, and <math>CD=13</math>, and let <math>B</math> be a point on <math>AD</m...")
Problem
Let there be a such that
,
, and
, and let
be a point on
such that
Let the circumcircle of
intersect hypotenuse
at
and
. Let
intersect
at
. If the ratio
can be expressed as
where
and
are relatively prime, find
Solution
We claim that
is the angle bisector of
.
Observe that
, which tells us that
is a
triangle. In cyclic quadrilateral
, we have
and
Since
, we have
. This means that
, or equivalently
, is an angle bisector of
in
.
By the angle bisector theorem and our
We seek the lengths
and
.
To find , we can proceed by Power of a Point using point
on circle
to get
Since
,
, and
, we have
Since
, we have