1991 AHSME Problems/Problem 6

Revision as of 04:39, 5 September 2021 by MRENTHUSIASM (talk | contribs) (Made the solution much more professional and well-formatted.)

Problem

If $x\geq 0$, then $\sqrt{x\sqrt{x\sqrt{x}}}=$

$\textbf{(A) } x\sqrt{x}\qquad \textbf{(B) } x\sqrt[4]{x}\qquad \textbf{(C) } \sqrt[8]{x}\qquad \textbf{(D) } \sqrt[8]{x^3}\qquad \textbf{(E) } \sqrt[8]{x^7}$

Solution

Recall that square roots are one-half powers, namely $\sqrt y=y^{\frac12}$ for all $y\geq0.$

We have \begin{align*} \sqrt{x\sqrt{x\sqrt{x}}} &= \sqrt{x\sqrt{x\cdot x^{\frac12}}} \\ &= \sqrt{x\sqrt{x^{\frac32}}} \\ &= \sqrt{x\cdot\left(x^{\frac32}\right)^{\frac12}} \\ &= \sqrt{x^{\frac74}} \\ &= \left(x^{\frac74}\right)^{\frac12} \\ &= x^{\frac78} \\ &= \boxed{\textbf{(E) } \sqrt[8]{x^7}}. \end{align*} ~Hapaxoromenon (Solution)

~MRENTHUSIASM (Reformatting)

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png